Newsletteranmeldung:

Fraunhofer ISE stapelt Zellen verschiedener Materialien übereinander

Solarzelle nutzt ein Drittel der Sonnenenergie

Mehrfachsolarzelle aus III-V-Halbleitern und Silicium, die 33,3 Prozent des Sonnenlichts in Strom wandelt. © Fraunhofer ISE/Mahler

Forscher des Fraunhofer-Instituts für Solare Energiesysteme ISE haben gemeinsam mit der Firma EVG eine neue Mehrfachsolarzelle auf Silicium entwickelt, mit der genau ein Drittel der im Sonnenlicht enthaltenen Energie in elektrische Energie gewandelt werden kann.

Solarzellen aus Silicium dominieren heute den globalen Photovoltaikmarkt mit einem Anteil von rund 90 Prozent. Forschung und Industrie arbeiten sich mit neuen technologischen Entwicklungsschritten an die theoretische Wirkungsgradgrenze des Halbleitermaterials Silicium heran. Gleichzeitig gehen sie neue Wege, um eine neue Generation von noch effizienteren Solarzellen zu entwickeln.

Die jetzt erzielte hohe Umwandlungseffizienz einer Mehrfachsolarzelle auf Silicium erreichten die Forscher durch 0.002 mm dünne Halbleiterschichten – weniger als ein zwanzigstel der Dicke eines Haars – aus III-V-Verbindungshalbleitern, die auf eine Siliciumsolarzelle aufgebracht werden. Das sichtbare Licht wird effizient in einer ersten Solarzelle aus Gallium-Indium-Phosphid absorbiert, das nahe Infrarotlicht in Galliumarsenid und längerwelliges Licht schließlich in Silicium. So können die Wirkungsgrade heutiger Siliciumsolarzellen signifikant gesteigert werden.

Photovoltaik-Entwicklung ist noch lange nicht am Ende

"Die Photovoltaik ist eine der wichtigsten Säulen für die Energiewende", sagt Dr. Andreas Bett, Institutsleiter des Fraunhofer ISE. "Die Kosten sind inzwischen so weit gesunken, dass die Photovoltaik eine wirtschaftliche Alternative zu konventionellen Energien darstellt. Aber diese Entwicklung ist noch lange nicht am Ende, und das neue Ergebnis zeigt, wie wir durch höhere Wirkungsgrade den Materialverbrauch reduzieren und damit nicht nur die Kosten noch weiter optimieren, sondern Solarstrom auch ressourcenschonend herstellen können."

Bereits im November 2016 hatten die Freiburger Solarforscher mit ihrem Industriepartner EVG einen Wirkungsgrad von 30,2 Prozent demonstriert und diesen im März 2017 auf 31,3 Prozent erhöht. Nun konnten sie die Lichtabsorption und die Ladungstrennung im Silicium noch einmal deutlich verbessern und damit einen neuen Rekordwert von 33,3 Prozent erzielen.

Die Rekordzelle mit dem neuen Ansatz gleicht von außen einer herkömmlichen Solarzelle mit zwei Kontakten und kann somit leicht in Photovoltaikmodule integriert werden. Die Technologie hat auch die Jury der GreenTec Awards 2018 überzeugt, sie wählte diese Entwicklung unter die Top drei in der Kategorie Energie.

Beim Konzept der Mehrfachsolarzellen übertrugen die Forscher 1.9 µm Mikrometer dünne III-V-Halbleiter­schichten auf Silicium. Die Verbindung gelang ihnen mittels eines aus der Mikroelektronik bekannten Verfahrens, dem direkten Waferbonden. Die Oberflächen wurden in einer Vakuumkammer von EVG im Hochvakuum mit Hilfe eines Ionenstrahls deoxidiert und anschließend unter Druck miteinander verpresst. Es entsteht eine Einheit, indem die Atome der III-V Oberfläche Bindungen mit dem Silicium eingehen. Der Solarzelle sieht man die komplexe innere Struktur nicht an, sie besitzt wie herkömmliche Siliciumsolarzellen einen einfachen Vorder- und Rückseitenkontakt und kann wie diese in PV-Module integriert werden.

Auf dem Weg zu einer industriellen Fertigung der III-V/Si Mehrfachsolarzelle müssen die Kosten der III-V-Epitaxie und der Verbindungstechnologie mit Silicium weiter gesenkt werden. Hier liegen große Herausforderungen, die die Freiburger Fraunhofer-Forscher in zukünftigen Entwicklungsvorhaben in ihrem neu entstehenden Zentrum für höchsteffiziente Solarzellen lösen wollen. Dort sollen sowohl III-V- als auch Siliciumtechnologien der nächsten Generation entwickelt werden. Zielsetzung ist es, in Zukunft höchsteffiziente Solarmodule mit mehr als 30 Prozent Wirkungsgrad zu ermöglichen. Quelle: Fraunhofer ISE / sth

Eine Verwendung dieses Textes ist kostenpflichtig. Eine Lizenzierung ist möglich.
Bitte nehmen Sie bei Fragen Kontakt auf.