Newsletteranmeldung:

Hybride Solarkollektoren

Internationales Forschungsprojekt optimiert Energy Harvesting

Mithilfe eines Energy Harvesting-Systems soll Restwärme genutzt und das Gesamtsystem damit effizienter gemacht werden. Foto: Thilo Schmülgen/TH Köln

Erzeugen technische Geräte oder Prozesse ungenutzte Energie wie Abwärme oder Vibration, kann dieses durch sogenannte Energy-Harvesting-Systeme in Elektrizität umgewandelt werden. Im internationalen Projekt FAST-SMART werden preiswerte und nachhaltige Materialien und Systeme für das Energy Harvesting entwickelt.

Beim Energy Harvesting werden Energiequellen wie Licht, Umgebungstemperatur oder Vibration mithilfe von geeigneten Wandlern in elektrische Energie umgesetzt. Die dafür notwendigen Materialien und Strukturen enthalten jedoch je nach Art des Wandlers seltene Rohstoffe wie Hafnium oder umweltkritische Substanzen wie Blei. „Es fehlen bisher effiziente Fertigungsprozesse, um für das Energy Harvesting zuverlässige Werkstoffe ohne seltene Elemente preiswert herzustellen“, erklärt Prof. Dr. Christoph Hartl vom Institut für Produktion der TH Köln. Zudem arbeiteten aktuelle Systeme aufgrund von Ausfällen, etwa durch Feuchtigkeit oder Korrosion, noch recht unzuverlässig und ineffizient.

In FAST-SMART arbeiten deshalb insgesamt 13 internationale Kooperationspartner an neuen Werkstoffen und Komponenten mit höherer Leistungsfähigkeit, für die keine seltenen Elemente benötigt werden und die zudem zuverlässig sowie wiederverwertbar sind. Darüber hinaus werden neue hocheffiziente Herstellungsverfahren erprobt und Energy Harvesting-Prototypen entwickelt.

Hybride Photovoltaiksysteme für mehr Effizienz

Das Projektteam der TH Köln ist für die Implementierung der neuen Materialien und Komponenten in konventionelle Photovoltaiktechnik zuständig. Die Schwerpunkte liegen hierbei auf der Gestaltung seriennaher Fertigungs- und Montagekonzepte. „Eine besondere Herausforderung ist es, kostengünstige, aber langlebige und effiziente Fertigungslösungen zu liefern“, sagt Hartl.

Photovoltaik alleine erlaube es nach neuesten Studien bereits heute, Strom zu Kosten von etwa 3,1 bis 11 Cent je Kilowattstunde zu erzeugen und zähle damit zu einer der günstigsten Energieerzeugungsformen, so Hartl. „Solarpanels erwärmen sich aber im Betrieb, wodurch deren Wirkungsgrad verringert wird. Diese Erwärmung wird durch die Integration der Energie Harvesting-Systeme abgebaut. Das führt zu einer Steigerung der Energieeffizienz des Gesamtsystems in der Größenordnung von voraussichtlich 20 bis 25 Prozent und gibt Spielraum für Investitionen in hybride Ergänzungen.“

Prototypentests verdeutlichen Potential der Technik

Erste Tests an Prototypen, die klassische Solarzellen mit Energy Harvesting-Komponenten zur Nutzung der Restwärme verbinden, verdeutlichen das Potential der hybriden Technik: „Wir konnten dabei bereits einen um etwa 20 Prozent gesteigerten Ertrag an elektrischer Energie nachweisen“, erläutert Hartl. Die Technologie soll nun in weiteren Schritten optimiert werden.

Zudem ist vorgesehen, dass IoT-Elemente (Internet of Things) mit Sensoren zur Überwachung von Photovoltaikanlagen und Elemente zur Datenübertragung integriert werden, die mit Hilfe des Energy Harvestings autonom versorgt werden können. „Das ist ein enormes Potential dieser Technologie: Durch die Möglichkeit, Anwendungen mit geringem Energiebedarf selbstständig mit Elektrizität aus dem Energy Harvesting und damit vollständig kabel- und batterielos zu betreiben, werden Systeme unkomplizierter und vor allem auch nachhaltiger“, sagt Hartl.

Das Vorhaben

Die Arbeiten zu dem hybriden Solarsystem werden im internationalen Forschungsprojekt „FAST and Nano-Enabled SMART Materials, Structures and Systems for Energy Harvesting“ (FAST-SMART) an der TH Köln von Prof. Dr. Christoph Hartl geleitet. Projektpartner sind die University of Strathclyde (Konsortialführer), die National Technical University of Athens, die University of Birmingham und die Université Savoie Mont Blanc sowie die Unternehmen Cedrat Technologies SA, Durante Space Tech s.l., GAE Engineering, Innovation in Research and Engineering Solutions (IRES), MBN Nanomaterialia S.p.A, Pascoe Engineering Ltd. und AVNIR Engineering und die Forschungseinrichtung National R&D Institute for Nonferrous and Rare metals. Das Vorhaben wird von der Europäischen Union im Rahmenprogramm Horizon 2020 mit etwa sieben Millionen Euro bis März 2024 gefördert. Die TH Köln erhält davon rund 250.000 Euro.

Quelle: TH-Köln / Delia Roscher

Eine Verwendung dieses Textes ist kostenpflichtig. Eine Lizenzierung ist möglich.
Bitte nehmen Sie bei Fragen Kontakt auf.